Extensions 1→N→G→Q→1 with N=C2xC26 and Q=C23

Direct product G=NxQ with N=C2xC26 and Q=C23
dρLabelID
C24xC26416C2^4xC26416,235

Semidirect products G=N:Q with N=C2xC26 and Q=C23
extensionφ:Q→Aut NdρLabelID
(C2xC26):C23 = C2xD4xD13φ: C23/C2C22 ⊆ Aut C2xC26104(C2xC26):C2^3416,216
(C2xC26):2C23 = D4xC2xC26φ: C23/C22C2 ⊆ Aut C2xC26208(C2xC26):2C2^3416,228
(C2xC26):3C23 = C22xC13:D4φ: C23/C22C2 ⊆ Aut C2xC26208(C2xC26):3C2^3416,226
(C2xC26):4C23 = C24xD13φ: C23/C22C2 ⊆ Aut C2xC26208(C2xC26):4C2^3416,234

Non-split extensions G=N.Q with N=C2xC26 and Q=C23
extensionφ:Q→Aut NdρLabelID
(C2xC26).1C23 = C2xD4:2D13φ: C23/C2C22 ⊆ Aut C2xC26208(C2xC26).1C2^3416,217
(C2xC26).2C23 = D4:6D26φ: C23/C2C22 ⊆ Aut C2xC261044(C2xC26).2C2^3416,218
(C2xC26).3C23 = C4oD4xD13φ: C23/C2C22 ⊆ Aut C2xC261044(C2xC26).3C2^3416,222
(C2xC26).4C23 = D4:8D26φ: C23/C2C22 ⊆ Aut C2xC261044+(C2xC26).4C2^3416,223
(C2xC26).5C23 = D4.10D26φ: C23/C2C22 ⊆ Aut C2xC262084-(C2xC26).5C2^3416,224
(C2xC26).6C23 = C4oD4xC26φ: C23/C22C2 ⊆ Aut C2xC26208(C2xC26).6C2^3416,230
(C2xC26).7C23 = C13x2+ 1+4φ: C23/C22C2 ⊆ Aut C2xC261044(C2xC26).7C2^3416,231
(C2xC26).8C23 = C13x2- 1+4φ: C23/C22C2 ⊆ Aut C2xC262084(C2xC26).8C2^3416,232
(C2xC26).9C23 = C4xDic26φ: C23/C22C2 ⊆ Aut C2xC26416(C2xC26).9C2^3416,89
(C2xC26).10C23 = C52:2Q8φ: C23/C22C2 ⊆ Aut C2xC26416(C2xC26).10C2^3416,90
(C2xC26).11C23 = C52.6Q8φ: C23/C22C2 ⊆ Aut C2xC26416(C2xC26).11C2^3416,91
(C2xC26).12C23 = C42xD13φ: C23/C22C2 ⊆ Aut C2xC26208(C2xC26).12C2^3416,92
(C2xC26).13C23 = C42:D13φ: C23/C22C2 ⊆ Aut C2xC26208(C2xC26).13C2^3416,93
(C2xC26).14C23 = C4xD52φ: C23/C22C2 ⊆ Aut C2xC26208(C2xC26).14C2^3416,94
(C2xC26).15C23 = C4:D52φ: C23/C22C2 ⊆ Aut C2xC26208(C2xC26).15C2^3416,95
(C2xC26).16C23 = C4.D52φ: C23/C22C2 ⊆ Aut C2xC26208(C2xC26).16C2^3416,96
(C2xC26).17C23 = C42:2D13φ: C23/C22C2 ⊆ Aut C2xC26208(C2xC26).17C2^3416,97
(C2xC26).18C23 = C23.11D26φ: C23/C22C2 ⊆ Aut C2xC26208(C2xC26).18C2^3416,98
(C2xC26).19C23 = C22:Dic26φ: C23/C22C2 ⊆ Aut C2xC26208(C2xC26).19C2^3416,99
(C2xC26).20C23 = C23.D26φ: C23/C22C2 ⊆ Aut C2xC26208(C2xC26).20C2^3416,100
(C2xC26).21C23 = C22:C4xD13φ: C23/C22C2 ⊆ Aut C2xC26104(C2xC26).21C2^3416,101
(C2xC26).22C23 = Dic13:4D4φ: C23/C22C2 ⊆ Aut C2xC26208(C2xC26).22C2^3416,102
(C2xC26).23C23 = C22:D52φ: C23/C22C2 ⊆ Aut C2xC26104(C2xC26).23C2^3416,103
(C2xC26).24C23 = D26.12D4φ: C23/C22C2 ⊆ Aut C2xC26208(C2xC26).24C2^3416,104
(C2xC26).25C23 = D26:D4φ: C23/C22C2 ⊆ Aut C2xC26208(C2xC26).25C2^3416,105
(C2xC26).26C23 = C23.6D26φ: C23/C22C2 ⊆ Aut C2xC26208(C2xC26).26C2^3416,106
(C2xC26).27C23 = C22.D52φ: C23/C22C2 ⊆ Aut C2xC26208(C2xC26).27C2^3416,107
(C2xC26).28C23 = Dic13:3Q8φ: C23/C22C2 ⊆ Aut C2xC26416(C2xC26).28C2^3416,108
(C2xC26).29C23 = C52:Q8φ: C23/C22C2 ⊆ Aut C2xC26416(C2xC26).29C2^3416,109
(C2xC26).30C23 = Dic13.Q8φ: C23/C22C2 ⊆ Aut C2xC26416(C2xC26).30C2^3416,110
(C2xC26).31C23 = C4.Dic26φ: C23/C22C2 ⊆ Aut C2xC26416(C2xC26).31C2^3416,111
(C2xC26).32C23 = C4:C4xD13φ: C23/C22C2 ⊆ Aut C2xC26208(C2xC26).32C2^3416,112
(C2xC26).33C23 = C4:C4:7D13φ: C23/C22C2 ⊆ Aut C2xC26208(C2xC26).33C2^3416,113
(C2xC26).34C23 = D52:8C4φ: C23/C22C2 ⊆ Aut C2xC26208(C2xC26).34C2^3416,114
(C2xC26).35C23 = D26.13D4φ: C23/C22C2 ⊆ Aut C2xC26208(C2xC26).35C2^3416,115
(C2xC26).36C23 = C4:2D52φ: C23/C22C2 ⊆ Aut C2xC26208(C2xC26).36C2^3416,116
(C2xC26).37C23 = D26:Q8φ: C23/C22C2 ⊆ Aut C2xC26208(C2xC26).37C2^3416,117
(C2xC26).38C23 = D26:2Q8φ: C23/C22C2 ⊆ Aut C2xC26208(C2xC26).38C2^3416,118
(C2xC26).39C23 = C4:C4:D13φ: C23/C22C2 ⊆ Aut C2xC26208(C2xC26).39C2^3416,119
(C2xC26).40C23 = C2xC4xDic13φ: C23/C22C2 ⊆ Aut C2xC26416(C2xC26).40C2^3416,143
(C2xC26).41C23 = C2xC26.D4φ: C23/C22C2 ⊆ Aut C2xC26416(C2xC26).41C2^3416,144
(C2xC26).42C23 = C52.48D4φ: C23/C22C2 ⊆ Aut C2xC26208(C2xC26).42C2^3416,145
(C2xC26).43C23 = C2xC52:3C4φ: C23/C22C2 ⊆ Aut C2xC26416(C2xC26).43C2^3416,146
(C2xC26).44C23 = C23.21D26φ: C23/C22C2 ⊆ Aut C2xC26208(C2xC26).44C2^3416,147
(C2xC26).45C23 = C2xD26:C4φ: C23/C22C2 ⊆ Aut C2xC26208(C2xC26).45C2^3416,148
(C2xC26).46C23 = C4xC13:D4φ: C23/C22C2 ⊆ Aut C2xC26208(C2xC26).46C2^3416,149
(C2xC26).47C23 = C23.23D26φ: C23/C22C2 ⊆ Aut C2xC26208(C2xC26).47C2^3416,150
(C2xC26).48C23 = C52:7D4φ: C23/C22C2 ⊆ Aut C2xC26208(C2xC26).48C2^3416,151
(C2xC26).49C23 = D4xDic13φ: C23/C22C2 ⊆ Aut C2xC26208(C2xC26).49C2^3416,155
(C2xC26).50C23 = C23.18D26φ: C23/C22C2 ⊆ Aut C2xC26208(C2xC26).50C2^3416,156
(C2xC26).51C23 = C52.17D4φ: C23/C22C2 ⊆ Aut C2xC26208(C2xC26).51C2^3416,157
(C2xC26).52C23 = C23:D26φ: C23/C22C2 ⊆ Aut C2xC26104(C2xC26).52C2^3416,158
(C2xC26).53C23 = C52:2D4φ: C23/C22C2 ⊆ Aut C2xC26208(C2xC26).53C2^3416,159
(C2xC26).54C23 = Dic13:D4φ: C23/C22C2 ⊆ Aut C2xC26208(C2xC26).54C2^3416,160
(C2xC26).55C23 = C52:D4φ: C23/C22C2 ⊆ Aut C2xC26208(C2xC26).55C2^3416,161
(C2xC26).56C23 = Dic13:Q8φ: C23/C22C2 ⊆ Aut C2xC26416(C2xC26).56C2^3416,165
(C2xC26).57C23 = Q8xDic13φ: C23/C22C2 ⊆ Aut C2xC26416(C2xC26).57C2^3416,166
(C2xC26).58C23 = D26:3Q8φ: C23/C22C2 ⊆ Aut C2xC26208(C2xC26).58C2^3416,167
(C2xC26).59C23 = C52.23D4φ: C23/C22C2 ⊆ Aut C2xC26208(C2xC26).59C2^3416,168
(C2xC26).60C23 = C2xC23.D13φ: C23/C22C2 ⊆ Aut C2xC26208(C2xC26).60C2^3416,173
(C2xC26).61C23 = C24:D13φ: C23/C22C2 ⊆ Aut C2xC26104(C2xC26).61C2^3416,174
(C2xC26).62C23 = C22xDic26φ: C23/C22C2 ⊆ Aut C2xC26416(C2xC26).62C2^3416,212
(C2xC26).63C23 = C22xC4xD13φ: C23/C22C2 ⊆ Aut C2xC26208(C2xC26).63C2^3416,213
(C2xC26).64C23 = C22xD52φ: C23/C22C2 ⊆ Aut C2xC26208(C2xC26).64C2^3416,214
(C2xC26).65C23 = C2xD52:5C2φ: C23/C22C2 ⊆ Aut C2xC26208(C2xC26).65C2^3416,215
(C2xC26).66C23 = C2xQ8xD13φ: C23/C22C2 ⊆ Aut C2xC26208(C2xC26).66C2^3416,219
(C2xC26).67C23 = C2xD52:C2φ: C23/C22C2 ⊆ Aut C2xC26208(C2xC26).67C2^3416,220
(C2xC26).68C23 = Q8.10D26φ: C23/C22C2 ⊆ Aut C2xC262084(C2xC26).68C2^3416,221
(C2xC26).69C23 = C23xDic13φ: C23/C22C2 ⊆ Aut C2xC26416(C2xC26).69C2^3416,225
(C2xC26).70C23 = C22:C4xC26central extension (φ=1)208(C2xC26).70C2^3416,176
(C2xC26).71C23 = C4:C4xC26central extension (φ=1)416(C2xC26).71C2^3416,177
(C2xC26).72C23 = C13xC42:C2central extension (φ=1)208(C2xC26).72C2^3416,178
(C2xC26).73C23 = D4xC52central extension (φ=1)208(C2xC26).73C2^3416,179
(C2xC26).74C23 = Q8xC52central extension (φ=1)416(C2xC26).74C2^3416,180
(C2xC26).75C23 = C13xC22wrC2central extension (φ=1)104(C2xC26).75C2^3416,181
(C2xC26).76C23 = C13xC4:D4central extension (φ=1)208(C2xC26).76C2^3416,182
(C2xC26).77C23 = C13xC22:Q8central extension (φ=1)208(C2xC26).77C2^3416,183
(C2xC26).78C23 = C13xC22.D4central extension (φ=1)208(C2xC26).78C2^3416,184
(C2xC26).79C23 = C13xC4.4D4central extension (φ=1)208(C2xC26).79C2^3416,185
(C2xC26).80C23 = C13xC42.C2central extension (φ=1)416(C2xC26).80C2^3416,186
(C2xC26).81C23 = C13xC42:2C2central extension (φ=1)208(C2xC26).81C2^3416,187
(C2xC26).82C23 = C13xC4:1D4central extension (φ=1)208(C2xC26).82C2^3416,188
(C2xC26).83C23 = C13xC4:Q8central extension (φ=1)416(C2xC26).83C2^3416,189
(C2xC26).84C23 = Q8xC2xC26central extension (φ=1)416(C2xC26).84C2^3416,229

׿
x
:
Z
F
o
wr
Q
<