extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2xC26).1C23 = C2xD4:2D13 | φ: C23/C2 → C22 ⊆ Aut C2xC26 | 208 | | (C2xC26).1C2^3 | 416,217 |
(C2xC26).2C23 = D4:6D26 | φ: C23/C2 → C22 ⊆ Aut C2xC26 | 104 | 4 | (C2xC26).2C2^3 | 416,218 |
(C2xC26).3C23 = C4oD4xD13 | φ: C23/C2 → C22 ⊆ Aut C2xC26 | 104 | 4 | (C2xC26).3C2^3 | 416,222 |
(C2xC26).4C23 = D4:8D26 | φ: C23/C2 → C22 ⊆ Aut C2xC26 | 104 | 4+ | (C2xC26).4C2^3 | 416,223 |
(C2xC26).5C23 = D4.10D26 | φ: C23/C2 → C22 ⊆ Aut C2xC26 | 208 | 4- | (C2xC26).5C2^3 | 416,224 |
(C2xC26).6C23 = C4oD4xC26 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 208 | | (C2xC26).6C2^3 | 416,230 |
(C2xC26).7C23 = C13x2+ 1+4 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 104 | 4 | (C2xC26).7C2^3 | 416,231 |
(C2xC26).8C23 = C13x2- 1+4 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 208 | 4 | (C2xC26).8C2^3 | 416,232 |
(C2xC26).9C23 = C4xDic26 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 416 | | (C2xC26).9C2^3 | 416,89 |
(C2xC26).10C23 = C52:2Q8 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 416 | | (C2xC26).10C2^3 | 416,90 |
(C2xC26).11C23 = C52.6Q8 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 416 | | (C2xC26).11C2^3 | 416,91 |
(C2xC26).12C23 = C42xD13 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 208 | | (C2xC26).12C2^3 | 416,92 |
(C2xC26).13C23 = C42:D13 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 208 | | (C2xC26).13C2^3 | 416,93 |
(C2xC26).14C23 = C4xD52 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 208 | | (C2xC26).14C2^3 | 416,94 |
(C2xC26).15C23 = C4:D52 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 208 | | (C2xC26).15C2^3 | 416,95 |
(C2xC26).16C23 = C4.D52 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 208 | | (C2xC26).16C2^3 | 416,96 |
(C2xC26).17C23 = C42:2D13 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 208 | | (C2xC26).17C2^3 | 416,97 |
(C2xC26).18C23 = C23.11D26 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 208 | | (C2xC26).18C2^3 | 416,98 |
(C2xC26).19C23 = C22:Dic26 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 208 | | (C2xC26).19C2^3 | 416,99 |
(C2xC26).20C23 = C23.D26 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 208 | | (C2xC26).20C2^3 | 416,100 |
(C2xC26).21C23 = C22:C4xD13 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 104 | | (C2xC26).21C2^3 | 416,101 |
(C2xC26).22C23 = Dic13:4D4 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 208 | | (C2xC26).22C2^3 | 416,102 |
(C2xC26).23C23 = C22:D52 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 104 | | (C2xC26).23C2^3 | 416,103 |
(C2xC26).24C23 = D26.12D4 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 208 | | (C2xC26).24C2^3 | 416,104 |
(C2xC26).25C23 = D26:D4 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 208 | | (C2xC26).25C2^3 | 416,105 |
(C2xC26).26C23 = C23.6D26 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 208 | | (C2xC26).26C2^3 | 416,106 |
(C2xC26).27C23 = C22.D52 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 208 | | (C2xC26).27C2^3 | 416,107 |
(C2xC26).28C23 = Dic13:3Q8 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 416 | | (C2xC26).28C2^3 | 416,108 |
(C2xC26).29C23 = C52:Q8 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 416 | | (C2xC26).29C2^3 | 416,109 |
(C2xC26).30C23 = Dic13.Q8 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 416 | | (C2xC26).30C2^3 | 416,110 |
(C2xC26).31C23 = C4.Dic26 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 416 | | (C2xC26).31C2^3 | 416,111 |
(C2xC26).32C23 = C4:C4xD13 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 208 | | (C2xC26).32C2^3 | 416,112 |
(C2xC26).33C23 = C4:C4:7D13 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 208 | | (C2xC26).33C2^3 | 416,113 |
(C2xC26).34C23 = D52:8C4 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 208 | | (C2xC26).34C2^3 | 416,114 |
(C2xC26).35C23 = D26.13D4 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 208 | | (C2xC26).35C2^3 | 416,115 |
(C2xC26).36C23 = C4:2D52 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 208 | | (C2xC26).36C2^3 | 416,116 |
(C2xC26).37C23 = D26:Q8 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 208 | | (C2xC26).37C2^3 | 416,117 |
(C2xC26).38C23 = D26:2Q8 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 208 | | (C2xC26).38C2^3 | 416,118 |
(C2xC26).39C23 = C4:C4:D13 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 208 | | (C2xC26).39C2^3 | 416,119 |
(C2xC26).40C23 = C2xC4xDic13 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 416 | | (C2xC26).40C2^3 | 416,143 |
(C2xC26).41C23 = C2xC26.D4 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 416 | | (C2xC26).41C2^3 | 416,144 |
(C2xC26).42C23 = C52.48D4 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 208 | | (C2xC26).42C2^3 | 416,145 |
(C2xC26).43C23 = C2xC52:3C4 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 416 | | (C2xC26).43C2^3 | 416,146 |
(C2xC26).44C23 = C23.21D26 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 208 | | (C2xC26).44C2^3 | 416,147 |
(C2xC26).45C23 = C2xD26:C4 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 208 | | (C2xC26).45C2^3 | 416,148 |
(C2xC26).46C23 = C4xC13:D4 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 208 | | (C2xC26).46C2^3 | 416,149 |
(C2xC26).47C23 = C23.23D26 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 208 | | (C2xC26).47C2^3 | 416,150 |
(C2xC26).48C23 = C52:7D4 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 208 | | (C2xC26).48C2^3 | 416,151 |
(C2xC26).49C23 = D4xDic13 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 208 | | (C2xC26).49C2^3 | 416,155 |
(C2xC26).50C23 = C23.18D26 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 208 | | (C2xC26).50C2^3 | 416,156 |
(C2xC26).51C23 = C52.17D4 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 208 | | (C2xC26).51C2^3 | 416,157 |
(C2xC26).52C23 = C23:D26 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 104 | | (C2xC26).52C2^3 | 416,158 |
(C2xC26).53C23 = C52:2D4 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 208 | | (C2xC26).53C2^3 | 416,159 |
(C2xC26).54C23 = Dic13:D4 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 208 | | (C2xC26).54C2^3 | 416,160 |
(C2xC26).55C23 = C52:D4 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 208 | | (C2xC26).55C2^3 | 416,161 |
(C2xC26).56C23 = Dic13:Q8 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 416 | | (C2xC26).56C2^3 | 416,165 |
(C2xC26).57C23 = Q8xDic13 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 416 | | (C2xC26).57C2^3 | 416,166 |
(C2xC26).58C23 = D26:3Q8 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 208 | | (C2xC26).58C2^3 | 416,167 |
(C2xC26).59C23 = C52.23D4 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 208 | | (C2xC26).59C2^3 | 416,168 |
(C2xC26).60C23 = C2xC23.D13 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 208 | | (C2xC26).60C2^3 | 416,173 |
(C2xC26).61C23 = C24:D13 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 104 | | (C2xC26).61C2^3 | 416,174 |
(C2xC26).62C23 = C22xDic26 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 416 | | (C2xC26).62C2^3 | 416,212 |
(C2xC26).63C23 = C22xC4xD13 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 208 | | (C2xC26).63C2^3 | 416,213 |
(C2xC26).64C23 = C22xD52 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 208 | | (C2xC26).64C2^3 | 416,214 |
(C2xC26).65C23 = C2xD52:5C2 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 208 | | (C2xC26).65C2^3 | 416,215 |
(C2xC26).66C23 = C2xQ8xD13 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 208 | | (C2xC26).66C2^3 | 416,219 |
(C2xC26).67C23 = C2xD52:C2 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 208 | | (C2xC26).67C2^3 | 416,220 |
(C2xC26).68C23 = Q8.10D26 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 208 | 4 | (C2xC26).68C2^3 | 416,221 |
(C2xC26).69C23 = C23xDic13 | φ: C23/C22 → C2 ⊆ Aut C2xC26 | 416 | | (C2xC26).69C2^3 | 416,225 |
(C2xC26).70C23 = C22:C4xC26 | central extension (φ=1) | 208 | | (C2xC26).70C2^3 | 416,176 |
(C2xC26).71C23 = C4:C4xC26 | central extension (φ=1) | 416 | | (C2xC26).71C2^3 | 416,177 |
(C2xC26).72C23 = C13xC42:C2 | central extension (φ=1) | 208 | | (C2xC26).72C2^3 | 416,178 |
(C2xC26).73C23 = D4xC52 | central extension (φ=1) | 208 | | (C2xC26).73C2^3 | 416,179 |
(C2xC26).74C23 = Q8xC52 | central extension (φ=1) | 416 | | (C2xC26).74C2^3 | 416,180 |
(C2xC26).75C23 = C13xC22wrC2 | central extension (φ=1) | 104 | | (C2xC26).75C2^3 | 416,181 |
(C2xC26).76C23 = C13xC4:D4 | central extension (φ=1) | 208 | | (C2xC26).76C2^3 | 416,182 |
(C2xC26).77C23 = C13xC22:Q8 | central extension (φ=1) | 208 | | (C2xC26).77C2^3 | 416,183 |
(C2xC26).78C23 = C13xC22.D4 | central extension (φ=1) | 208 | | (C2xC26).78C2^3 | 416,184 |
(C2xC26).79C23 = C13xC4.4D4 | central extension (φ=1) | 208 | | (C2xC26).79C2^3 | 416,185 |
(C2xC26).80C23 = C13xC42.C2 | central extension (φ=1) | 416 | | (C2xC26).80C2^3 | 416,186 |
(C2xC26).81C23 = C13xC42:2C2 | central extension (φ=1) | 208 | | (C2xC26).81C2^3 | 416,187 |
(C2xC26).82C23 = C13xC4:1D4 | central extension (φ=1) | 208 | | (C2xC26).82C2^3 | 416,188 |
(C2xC26).83C23 = C13xC4:Q8 | central extension (φ=1) | 416 | | (C2xC26).83C2^3 | 416,189 |
(C2xC26).84C23 = Q8xC2xC26 | central extension (φ=1) | 416 | | (C2xC26).84C2^3 | 416,229 |